
Flecto: Cross-Layer Adaptive Congestion Control
with Reinforcement Learning

Cristiano Serra∗†, Emilio Paolini‡, Alessio Sacco∗, Roger Immich†§, Guido Marchetto∗, Flavio Esposito†
† Department of Computer Science, Saint Louis University, USA

∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy
‡ TeCIP Institute, Scuola Superiore Sant’Anna, Italy

§ Digital Metropolis Institute, Federal University of Rio Grande do Norte (UFRN), Brazil

Abstract—Effective congestion control is critical for wireless
networks, where rapidly varying channel conditions and diverse
traffic demands can severely degrade performance. Traditional
congestion control algorithms rely on static heuristics that are
often ill-suited for dynamic wireless environments. In this paper,
we introduce Flecto, a Reinforcement Learning (RL)-based con-
gestion control solution integrated into the QUIC protocol that,
leveraging cross-layer metrics, including Signal-to-Noise Ratio,
Block Error Rates, and Round-Trip Time measurements, can
take decisions using a comprehensive view of network conditions.
We implemented Flecto on a 5G testbed using OpenAirInterface
and ETTUS USRP B210 radios, showing how it adapts trans-
mission rates in real-time to maximize throughput and minimize
latency while maintaining stability. Experimental results show
that Flecto achieves an average throughput of 4539.5 KB/s
approximately 6% higher both than Cubic (4267.2 KB/s) and
New Reno (2674.1 KB/s) while reducing the average Round-Trip
Time to 21.8 ms, significantly lower than Cubic’s 27.6 ms and
New Reno’s 174.9 ms. These performance gains underscore the
promise of integrating RL with cross-layer feedback for adaptive,
efficient congestion control in next-generation wireless networks.
Moreover, the modular design of Flecto facilitates its extension to
other transport protocols and multi-user scheduling frameworks,
paving the way for broader adoption in future wireless systems.

Index Terms—Congestion Control, Reinforcement Learning,
Wireless Networks, Machine Learning

I. INTRODUCTION

Wireless networks are fundamental to modern communica-
tion, supporting applications ranging from high-speed mobile
broadband to IoT and smart infrastructure [1]. The dynamic
nature of wireless environments, characterized by fluctuat-
ing signal strength, interference, and user mobility, poses
significant challenges for network optimization [2]. Among
these, congestion control remains a critical yet complex task,
as it requires dynamic management of data transmission to
balance throughput, latency, and fairness under unpredictable
conditions [3].

Traditional congestion control algorithms such as Transmis-
sion Control Protocol (TCP) Cubic [4] and Reno [5] rely on
predefined heuristics that adapt poorly to wireless environ-
ments. These methods are designed for stable, wired networks
and often struggle to accommodate the rapid variations in link
quality and resource availability inherent to wireless systems.
Their reliance on high-level metrics, such as packet loss or
Round-Trip Time (RTT), offers only a partial view of the
network, leading to inefficiencies in dynamic scenarios [6].

Machine learning (ML), particularly Reinforcement Learn-
ing (RL), offers a novel approach to congestion control by
enabling data-driven, adaptive decision-making. By learning
from the surrounding environment, RL-based algorithms opti-
mize their actions based on real-time feedback. While sev-
eral RL-based congestion control protocols have been pro-
posed [7]–[12], they fail to adapt to typical wireless traffic
and network conditions, which can change dramatically due
to user mobility and interference.

To this end, we introduce Flecto, a novel RL–based con-
gestion control algorithm that integrates cross-layer met-
rics—from the physical, MAC, to transport layers—to intelli-
gently optimize network performance. By combining low-level
metrics, such as Signal-to-Noise Ratio (SNR) and modulation
schemes, with high-level metrics like RTT and bandwidth
utilization, the proposed approach provides a complete un-
derstanding of network conditions. This comprehensive view
enables the RL model to make more informed and effective
decisions, optimizing performance under various scenarios.

In addition, these decisions are embedded in the QUIC
protocol, which is increasingly adopted due to its superior
performance compared to traditional transport protocols [13],
[14]. By embedding Flecto’s RL-based congestion control
within QUIC, the protocol can dynamically adjust transmission
rates using real-time cross-layer metrics, enhancing throughput
and reducing latency in wireless environments.

In summary, the main contributions of this paper are: (i)
the development of an RL-based congestion control algorithm;
(ii) the comprehensive integration of cross-layer metrics to
enhance QUIC decision-making; (iii) the implementation on
a real-world 5G testbed using OpenAirInterface (OAI) and
ETTUS USRP B210 radios; and (iv) the demonstration of sig-
nificant performance improvements in throughput and latency
compared to traditional methods.

The remainder of this paper is organized as follows. Section
II reviews related work, highlighting the limitations of existing
approaches and the potential of RL for congestion control.
Section III details the design ideas behind Flecto, including the
RL model design and the metrics used. Section IV describes
the experimental setup and testbed configuration, analyzing the
results, and comparing the proposed approach to conventional
algorithms. Finally, Section V concludes the paper and outlines
future research directions.



II. RELATED WORK

Congestion control is an important aspect of network man-
agement, ensuring data is transmitted efficiently and reliably
across a network. Over the years, several methods have been
developed to address congestion in various network environ-
ments.

Notable, traditional congestion control mechanisms – such
as Cubic [4], Reno [5], NewReno [15], Vegas [16], and
BBR [17] – have been primarily implemented at the transport
layer, with TCP being one of the most widely used protocols.
While these traditional congestion control algorithms have
been instrumental in managing network traffic, they encounter
specific limitations in wireless environments. Indeed, by re-
lying on hard-coded rules and predefined thresholds, they
fail to interpret stochastic data loss, leading to suboptimal
performance when network conditions change rapidly, as is
often the case in wireless networks.

The application of ML and RL to congestion control rep-
resents a significant advancement over traditional methods.
Unlike conventional algorithms, ML and RL approaches can
learn and adapt to dynamic network conditions, making them
particularly suitable for complex and variable environments
such as wireless networks [8]–[10], [18]. In this context,
Aurora [10] employs a Neural Network (NN) to predict the
optimal sending rate based on observed network conditions
such as latency and packet loss. Similarly, Owl [8] and
Orca [9] extend the Cubic implementation by adding an RL
learning model that can work even in unexplored conditions.
Remy [19] is set as a supervised learning technique that
generates sending rules based on historical network data and
predefined objectives. Sage [11], instead, combines predictive
modeling with real-time data analysis by using ML techniques
to forecast network congestion and using RL to adjust data
transmission rates accordingly.

While these solutions show the potential of data-driven
approaches in developing more adaptive and efficient con-
gestion control algorithms,they base their decision on high-
level measurements, having only a partial view of the network
state. Indeed, they overlook physical layer measurements that
can be very useful for adapting to the dynamic conditions of
wireless networks. In addition, by modifying the TCP protocol,
they inherit known limitations of this protocol when handling
packet loss [3].

Solutions specifically designed for wireless and operating at
different levels exist, e.g., Sprout [20] and Verus [21]; however,
they are tailored to pre-determined network conditions and fail
to generalize over unseen ones. In contrast, Flecto leverages
cross-layer metrics within a protocol spanning layers 4 to
7, such as QUIC, enabling proactive congestion management
through a more adaptive and context-aware approach.

III. FLECTO DESIGN OVERVIEW

This section introduces the design of Flecto, our RL-
based congestion control algorithm that is able to adapt
dynamically to the varying conditions of wireless networks.
Flecto architecture, depicted in Fig. 1, comprises three main

Metric 
Collection

Layer 1 Layer 2 Layer 4

RL-based 
Decision Making

Action
Execution

Network State

Fig. 1: System architecture of Flecto.

components detailed in the following: metric collection, RL-
based decision-making, and action execution.

A. Metric Collection

The Metric Collection continuously gathers metrics from
different network stack layers. Unlike traditional methods that
follow predefined algorithmic rules, Flecto dynamically adapts
by leveraging cross-layer metrics from the physical, MAC,
and transport layers. This allows gaining a comprehensive
understanding of the network state, improving responsiveness
to rapidly changing conditions. At the Physical Layer (Layer
1), low-level metrics such as signal strength, modulation
and coding schemes (MCS), and noise power are collected,
offering insights into the real-time condition of the wireless
channel, including signal quality and interference levels. At
the MAC Layer (Layer 2), the system captures medium-
access metrics like Block Error Rate (BLER), scheduling
decisions, and retransmission attempts, which are essential for
assessing link-layer efficiency and resource utilization. At the
Transport Layer (Layer 4), high-level metrics such as RTT,
congestion window (cwnd) size, and bandwidth utilization
are monitored, reflecting the overall network performance and
end-to-end behavior. This complete view enables Flecto to
make informed, data-driven decisions (continuously adjusting
to real-time network conditions) while effectively balancing
throughput and latency. Flecto employs 41 metrics collected
from Layer 1, the MAC layer, and Layer 4, with 18 metrics
from Layer 1, 19 from Layer 2 (MAC), and 4 from Layer
4, as detailed in Table I. Data are gathered at 1-second inter-
vals, and to mitigate differences in logging caused by driver
implementations, each sample is computed as the average of
the metrics collected over the last second. Missing values are
replaced with the most recent sample. These averaged metrics
are subsequently fed into the RL algorithm.

B. RL-based Model

Reinforcement Learning is a machine learning paradigm
where an agent learns optimal decision-making strategies by
interacting with an environment and receiving feedback in
the form of rewards. Unlike traditional supervised learning,
RL does not rely on labeled data but instead optimizes its
actions to maximize long-term rewards through trial-and-error
exploration. In the RL-based decision-making component, an
RL agent processes collected network metrics to determine
optimal congestion control actions. The agent’s policy is



TABLE I: Cross-layer metrics used in our model

Layer Metrics

L1 (Physical Layer) Blacklisted Physical Resource Blocks (PRBs), Total PRBs, Max IO, Min IO, Avg IO, Physical Random
Access Channel (PRACH) IO, Current Quadrature Modulation (QM) Downlink (DL), Current Rank
Indicator (RI) DL, Total Bytes TX, Uplink Shared Channel Power (ULSCH) Power, ULSCH Noise
Power, Sync Pos, Round Trials, Discontinuous Transmission (DTX), Current QM UL, Current RI UL,
Total Bytes RX, Total Bytes Scheduled

L2 (MAC Layer) PH, PCMAX, Reference Signal Received Power (RSRP), meas, UL RI, Transmission Precoding Matrix
Indicator (TPMI), Dlsch Rounds, Dlsch Errors, PUCCH0 DTX, Block Error Rate Downlink (BLER)
DL, Modulation and Coding Scheme (MCS) DL, Dlsch Total Bytes, Ulsch Rounds, Ulsch DTX, Ulsch
Errors, BLER UL, MCS UL, Ulsch Total Bytes Scheduled, Ulsch Total Bytes Received

L4 (Transport Layer) Bandwidth Average, Congestion Window Average, Smoothed RTT, RTT Mean Deviation

trained to maximize a reward function that captures Key
Performance Indicators (KPIs) such as throughput and latency.
By continuously refining its policy through interactions with
the network environment, the RL agent adapts to varying
traffic conditions and enhances overall network performance.
In detail, at each iteration, the agent receives the current state
and the reward from the dynamic system and outputs an action
that optimizes a given objective. Thus, state and reward are
the values that the agent receives from the system, whereas
the action is the only input that the system acquires from
the agent. A reward value indicates the success of the agent’s
action decisions, and the agent learns which actions to select
to provide the highest accumulated reward over time, i.e., the
long-term revenue.

In Flecto, the state space is constituted by Table I. The
action space’s choice is a crucial aspect in the design of
an RL agent, as it determines the range of possible adjust-
ments the agent can make, shaping its ability to respond to
network dynamics efficiently. A larger action space offers
greater flexibility and finer control, enabling the agent to
discover optimal solutions and adapt to complex scenarios.
However, this flexibility comes at the cost of increased learning
complexity, longer training times, and higher computational
demands. Balancing exploration and exploitation also becomes
more challenging, particularly in resource-constrained envi-
ronments. Therefore, selecting an appropriate action space
involves a trade-off between flexibility and efficiency. After
extensive experimentation, a discrete action space composed
of 11 actions (as summarized in Table II) has been chosen, as
it provides a favorable trade-off.

These values were selected to enable rapid and adaptive con-
gestion window adjustments, specifically, to quickly decrease
(see actions 0 and 1) and to slightly increase the latter. This
responsiveness is especially beneficial in two key scenarios:
(i) during network startup, where a fast ramp-up in bandwidth
utilization is crucial, and (ii) in the event of packet loss,
where an immediate reduction helps mitigate congestion. The
exact parameters were determined after a thorough analysis of
data collected from established congestion control algorithms,
notably Cubic [4] and NewReno [15]. By aligning with their
proven performance characteristics, our approach ensures both
stability and efficiency in dynamically adapting to network
conditions.

TABLE II: Actions Space

Action Index Action Definition
0 f(x) = x

3
1 f(x) = x

2
2 f(x) = x− 10
3 f(x) = x− 7
4 f(x) = x− 3
5 f(x) = x
6 f(x) = x+ 3
7 f(x) = x+ 7
8 f(x) = x+ 10
9 f(x) = x× 2
10 f(x) = x× 3

We then design a reward function that encourages the agent
to maximize throughput while minimizing latency, aligning
with the overall goal of congestion control. We formalize this
objective in the following equation:

R =
Bandwidth

RTT
(1)

On one hand, maximizing throughput is essential for making
efficient use of the available network capacity, allowing for the
rapid transmission of data. On the other hand, reducing RTT is
critical for maintaining network responsiveness and ensuring
a smooth user experience. By formulating the reward as the
ratio of bandwidth to RTT, the function inherently promotes
configurations that achieve high data transfer rates while keep-
ing delays to a minimum. Similar reward formulations have
been employed in studies such as [22] on resource allocation
in vehicular networks. Although alternative reward functions
could incorporate additional network performance metrics, this
formulation was chosen for its simplicity, interpretability, and
proven effectiveness in dynamic wireless environments.

In addition, to deal with the large state and action spaces,
we approximate the traditional RL model via NN, reducing
the total available actions. This technique is referred to as
Deep Reinforcement Learning (DRL) and, specifically, deep
Q-Learning, which uses neural networks parameterized by θ to
approximate the Q-function. Moreover, as it can happen that
this approach diverges due to dynamical and frequent changes
in the target [23], we also introduce a separate network, the
target network. This approach is usually denoted in the litera-
ture as Deep Q-Network (DQN), and we configure a periodic
update of the target network with the current Q-function.
This DQN-based approach is known for its robustness and



computational efficiency, making a good candidate for our use
case, where for example GPU-equipped servers are not always
present. The chosen neural network consists of a Multi-Layer
Perceptron (MLP) with 2 layers, each containing 64 neurons.

A key challenge during implementation was efficiently
executing the training process given RL’s sequential nature,
which demands real-time feedback from the antennas. Unlike
static data collection, real-time training requires that incoming
metrics are processed and fed to the model immediately to
enable adaptive learning. To address this, we implemented
a real-time data pipeline integrated within the OAI. This
system buffers and averages cross-layer metrics at one-second
intervals while ensuring minimal latency so that the RL agent
receives prompt updates from the base stations. During model
training, the network conditions were carefully replicated from
the data collection phase to account for the inherent variability
and unpredictability of the environment.

We implement such a model using Stable Baselines3 as
framework [24]. These are a set of reliable implementations
of RL algorithms in PyTorch.

C. Action Execution

The Action Execution component is responsible for applying
the actions selected by the RL agent, serving as the system’s
interface for interacting with the environment. Its implemen-
tation is greatly facilitated by QUIC’s presence in the user
plane, which simplifies integration and deployment. Different
from other TCP-based solutions, such as [8], [9], [11], this
approach offers greater flexibility and adaptability to network
events. This component plays a critical role, especially during
deployment, as it is the only one capable of directly influ-
encing the environment. By ensuring seamless execution of
selected actions, it bridges the gap between decision-making
and real-world impact, making it essential for the system’s
overall effectiveness.

In summary, Flecto offers a powerful approach to enhanc-
ing network performance and adaptability, particularly in the
context of dynamic congestion control. By leveraging RL,
Flecto continuously optimizes congestion control parameters
in real-time, responding to fluctuating network conditions to
maximize throughput, minimize latency, and ensure stability.
This adaptive capability positions Flecto as a robust solution
for next-generation wireless networks.

IV. TESTBED IMPLEMENTATION AND EVALUATION

The evaluation of congestion control algorithms presents
several significant challenges. First, congestion control per-
formance relies on multiple interdependent metrics, includ-
ing throughput, latency, jitter, and packet loss. Achieving a
balanced evaluation is particularly difficult, as improving one
metric often comes at the expense of another. Furthermore,
these factors can vary significantly over time and across differ-
ent environments. Lastly, reproducibility poses a considerable
obstacle as variations in test environments, traffic patterns,
and network configurations make it challenging to ensure

that evaluation results can be consistently reproduced across
different studies.

To rigorously address these challenges, we have devel-
oped a comprehensive evaluation framework. The following
subsection outlines the design and the implementation of
our testbed, details the methodology used to assess Flecto’s
performance, and also explains the rationale behind selecting
specific metrics.

A. Testbed setup and data collection

Data was collected by exploiting the OAI framework, a
versatile and open-source platform that enables the simula-
tion, development, and testing of Next Generation wireless
networks.

The testbed, as depicted in Fig. 2, is based on two separate
PCs, a laptop functioning as the UE and a workstation that
runs both the gNodeB and the core network software. The
workstation is equipped with an Intel(R) Xeon(R) Gold 6312U
CPU @ 2.40GHz with 24 cores and 64GB of ECC RAM,
while the laptop features a 12th Gen Intel(R) Core(TM) i7-
1260P with 12 cores, and an integrated GPU. Concerning
the radio equipment and channel, the ETTUS USRP B210
Software Defined Radio module and the 5G N78 frequency
are used. The adoption of real 5G radios in experimentation is
important for achieving accurate and reliable results, offering
several key advantages over emulated scenarios. In fact real-
world 5G deployments provide a more precise representation
of the complex interactions between network components,
such as latency variations, signal interference, and bandwidth
fluctuations, which are difficult to replicate in a simulated
environment. Additionally, real 5G radios enable testing under
authentic conditions, allowing for a better understanding of the
performance and limitations of algorithms or applications in
practical use cases.

Two different QUIC and HTTP/3 implementations are con-
sidered: a Python-based called aioquic [25] and a Rust-based
called QUICHE [26], both developed by Cloudflare.

User 
Equipment gNB Core Network

Server

Fig. 2: The hardware setup.

To better organize data collection, the OAI’s driver is con-
figured to log the data to two different files, one for the Layer
1 metrics and one for the MAC Layer metrics. The sampling
frequency is limited to once per second to mitigate the impact
of potential overhead due to logging. Finally, random requests
ranging from 500 KB to 500 MB are used in order to ensure
proper variability in requests while providing a simple way to
reproduce the results.



TABLE III: Throughput and Round Trip Time: average values
and standard deviations.

Algorithm Throughput [KB/s] RTT [ms]
New Reno 2674.1 ± 1123.0 174.9 ± 182.6

Cubic 4267.2 ± 876.2 27.6 ± 23.2
Flecto 4539.5 ± 950.3 21.8 ± 1.1

B. Performance Assessment

In order to evaluate the performance of our congestion
control solution, we compare it with the two well-known
state-of-the-art algorithms, namely NewReno and CUBIC.
As evaluation metrics, the achieved throughput and RTT are
considered for our analysis.

A key aspect to consider in this evaluation is the dynamicity
of the 5G network environment. In particular, a proper physical
setup of the antennas is crucial to ensure a fair comparison.
In a 5G environment, the Reference Signal Received Power
(RSRP) is a key performance indicator used to measure the
signal strength of a cell’s reference signal received by a UE,
such as a smartphone or other connected devices. Given the
logarithmic nature of the dBm measurement unit for RSRP,
significant changes in actual power levels appear as relatively
small changes in dBm values. However, these values can
fluctuate slightly from second to second due to factors such
as changes in air conditions or the presence of obstacles.
Consequently, a complete repeatability is rarely achievable,
except in some specific controlled environments. To ensure
consistency across all experiments, we adjusted the antenna
positions to exactly match the same RSRP value before starting
each experiment. This approach provided the most reliable
methodology given the limitations explained above.

Fig. 3a depicts the throughput performance over 100
timesteps for the three congestion control algorithms. Flecto
achieves the highest throughput among the three, consistently
reaching values between 4 and 6 Mbps with minimal fluc-
tuations. Cubic exhibits a comparable throughput in certain
regions but experiences more pronounced drops, indicating
occasional performance degradation. NewReno demonstrates
the lowest performance, with throughput values fluctuating
around 3 to 4 Mbps and frequent dips. The reduced frequency
of deep throughput drops indicates that Flecto adapts more ef-
ficiently to network conditions, leading to improved bandwidth
utilization.

In Table III, we present the time-averaged throughput and
standard deviation for each algorithm. The results show that
Flecto achieves the highest average throughput at 4539.5 KB/s,
exceeding Cubic by 272.3 KB/s and NewReno by 1865.4
KB/s, highlighting its more effective bandwidth utilization.

Fig. 3b compares the measured RTT evolution over 100
timesteps for the three different algorithms. Flecto maintains
the lowest and most stable RTT, consistently hovering around
20 ms with minimal fluctuations. Cubic exhibits slightly higher
RTT variations, occasionally spiking above 40 ms, reflecting
its more aggressive congestion window growth. NewReno, in
contrast, suffers from the highest and most volatile RTT, with
a spike exceeding 300 ms, indicating its inefficient handling

of congestion.
Table III summarizes the time-averaged RTT and its stan-

dard deviation for each algorithm. Notably, Flecto achieves a
low average RTT of 21.8 ms, with only a 1.1 ms deviation,
indicating highly stable latency. In contrast, Cubic records a
slightly higher average RTT of 27.6 ms with moderate fluctua-
tions (±23.2 ms). Meanwhile, New Reno exhibits considerably
poorer performance, with an average RTT of 174.9 ms and
extreme variability (±182.6 ms), underscoring its inefficiency
in managing congestion.

Finally, Fig. 3c provides a snapshot of each algorithm’s
ability to balance throughput against latency. The standard
deviation is too small to be presented. Flecto (red circle)
consistently achieves both a higher throughput (≈ 4.4Mbps)
and a lower RTT (≈ 21.8ms) compared to the other algo-
rithms. Cubic (green star) achieves slightly lower throughput
(≈ 4.2Mbps) than Flecto and experiences a moderate in-
crease in RTT (≈ 27ms). NewReno (blue diamond) delivers
the lowest throughput (≈ 2.7Mbps) and the highest RTT
(≈ 174.9ms), highlighting its limited scalability in dynamic
wireless settings.

V. CONCLUSION

In this paper, we introduced Flecto, a novel ML-driven
congestion control approach for wireless networks, integrating
cross-layer metrics into the QUIC protocol. By leveraging fine-
grained measurements from the physical, MAC, and transport
layers, Flecto dynamically predicts network conditions and
adjusts transmission rates to improve bandwidth utilization,
reduce latency, and maintain stable performance even in highly
dynamic 5G environments. Our experimental evaluation on a
real-world 5G testbed demonstrated that Flecto consistently
outperforms traditional congestion control algorithms such
as Cubic and NewReno. Notably, Flecto achieved higher
throughput and more consistent low-latency performance, un-
derscoring the benefits of integrating ML techniques with
comprehensive network state information.

Despite these promising results, several challenges remain
open. First, the interpretability of RL-driven decisions is an on-
going concern for network operators who require transparent
and explainable systems before deploying black-box solutions.
Second, while Flecto’s modular design offers potential for
extensibility, scaling it to multi-user and multi-flow scenarios
in heterogeneous wireless environments introduces significant
challenges in terms of model complexity and real-time data
processing.

Overall, Flecto marks a significant advancement in adaptive
and efficient congestion control for wireless networks. Its mod-
ular design can be extended to other transport protocols and
multi-user scheduling frameworks, broadening its applicability
across diverse networking scenarios. As wireless standards
evolve and device capabilities advance, RL-driven congestion
control schemes are poised to play an increasingly central role
in ensuring high performance, reliability, and responsiveness in
next-generation networks. Flecto’s approach paves the way for
more intelligent, data-driven network optimization, reinforcing



0 20 40 60 80 100
Timesteps

0

2

4

6
Th

ro
ug

hp
ut

 (M
bp

s)

Flecto
Cubic
New Reno

(a) Throughput vs. Time

0 20 40 60 80 100
Timesteps

0

100

200

300

RT
T 

(m
s)

Flecto
Cubic
New Reno

(b) RTT vs. Time

10 50 90 130 170
RTT (ms)

2.5

3.0

3.5

4.0

4.5

Th
ro

ug
hp

ut
 (M

bp
s) Flecto

Cubic
New Reno

(c) Throughput vs. RTT

Fig. 3: Comparison between Flecto, Cubic, and New Reno. Flect can jointly maintain high throughput and low delay over
time.

the potential of machine learning in shaping the future of
wireless communications.

ACKWNOWLEDGEMENT

This work has been supported by the National Science
Foundation (NSF) Award OAC # 2201536, and Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. This study is also sup-
ported by the Chips Joint Undertaking (JU), European Union
(EU) HORIZON JU-IA, and its members (including top-up
funding by MIMIT), under grant agreement No. 101140087
(SMARTY), and from the NGI Enrichers program, funded by
the European Union’s Horizon Europe Research and Innova-
tion Programme under grant agreement 101070125.

REFERENCES

[1] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and
emerging technologies,” IEEE access, vol. 3, pp. 1206–1232, 2015.

[2] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated look at 5g in the
wild: performance, power, and qoe implications,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021, pp. 610–625.

[3] J. Lorincz, Z. Klarin, and J. Ožegović, “A comprehensive overview of
tcp congestion control in 5g networks: Research challenges and future
perspectives,” Sensors, vol. 21, no. 13, p. 4510, 2021.

[4] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[5] Reno explanation. [Online]. Available:
https://www.geeksforgeeks.org/tcp-tahoe-and-tcp-reno/

[6] C. Luo, F. R. Yu, H. Ji, and V. C. Leung, “Cross-layer design for
TCP performance improvement in cognitive radio networks,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2485–2495,
2010.

[7] A. R. Andrade-Zambrano, J. P. A. León, M. E. Morocho-Cayamcela,
L. L. Cárdenas, and L. J. de la Cruz LLopis, “A reinforcement learning
congestion control algorithm for smart grid networks,” IEEE Access,
2024.

[8] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Owl: Congestion
Control with Partially Invisible Networks via Reinforcement Learning,”
in IEEE INFOCOM 2021 - IEEE Conference on Computer Communi-
cations. IEEE, 2021, pp. 1–9.

[9] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern:
A pragmatic learning-based congestion control for the internet,” in
Proceedings of the Annual conference of the ACM Special Interest Group
(SIGCOMM ’20). ACM, 2020, pp. 632–647.

[10] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proceedings of the 36th International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 3050–3059.

[11] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers Can Learn from
the Heuristic Designs and Master Internet Congestion Control,” in
Proceedings of the ACM SIGCOMM 2023 Conference. ACM, 2023,
pp. 255–274.

[12] L. Pappone, A. Sacco, and F. Esposito, “Mutant: Learning Congestion
Control from Existing Protocols via Online Reinforcement Learning,”
in 22nd USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’25’). USENIX Association, 2025.

[13] J. Iyengar, M. Thomson et al., “QUIC: A UDP-based multiplexed and
secure transport,” in RFC 9000. Internet Engineering Task Force (IETF)
Fremont, CA, USA, 2021.

[14] M. Soni and B. S. Rajput, “Security and performance evaluations of quic
protocol,” in Data Science and Intelligent Applications: Proceedings of
ICDSIA 2020. Springer, 2021, pp. 457–462.

[15] S. Floyd, T. Henderson, and A. Gurtov, “The newreno modification to
tcp’s fast recovery algorithm,” Tech. Rep., 2004.

[16] L. S. Brakmo and L. L. Peterson, “Tcp vegas: A fair and efficient
congestion control algorithm,” IEEE Journal on selected areas in
communications, 1995.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: congestion-based congestion control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[18] H. Tian, X. Liao, C. Zeng, J. Zhang, and K. Chen, “Spine: an efficient
drl-based congestion control with ultra-low overhead,” in Proceedings of
the 18th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’22). ACM, 2022, pp. 261–275.

[19] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 123–134, 2013.

[20] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks,” in
10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13). USENIX Association, 2013, pp. 459–471.

[21] Y. Sakai, T. Aalto, R. Chandra, and M. Steiner, “Adaptive Congestion
Control for Unpredictable Cellular Networks,” in Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communica-
tion (SIGCOMM). ACM, 2015, p. 127–138.

[22] H. Ye and G. Y. Li, “Deep reinforcement learning for resource allo-
cation in v2v communications,” in IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[23] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[24] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html

[25] aiortc, “aioquic: An implementation of the quic protocol in
python,” January 2025, accessed: 2025-01-13. [Online]. Available:
https://github.com/aiortc/aioquic

[26] Cloudflare, “Quiche: A quic implementation by cloudflare,”
January 2025, accessed: 2025-01-13. [Online]. Available:
https://github.com/cloudflare/quiche


